UNIC DF Training

Mech. Components & Hydraulic systems (RT-flex50/X52/X62/X72DF Specific Parts only for Diesel running)

Overview

Exhaust Valve actuation

Overview

flex50/X52/62/72 Specific Parts

flex50/X52/62/72 specific Components

Fuel and servo oil pumps

- Compact design at the engine driving end
- Combined arrangement of heavy fuel oil and servo oil supply in one housing
- Fuel oil supply
 - Pressure up to 1000 bar
 - 2-3 fuel pumps
- Servo oil supply
 - Pressure up to 300 bar (50DF: 200 bar)
 - Axial piston type oil pumps
 - 2 pumps

The fuel- and servo pumps are driven by the crankshaft via intermediate wheel

Supply Unit – flex50DF / X52DF

10 © 2020 WinGD

Fuel Pump

- The jerk-type fuel pumps deliver variable quantity of fuel to the fuel rail pipe in order to maintain the demanded fuel rail pressure
- To change the feeding quantity, the pump plunger is turned by the regulating rack
- The guide piston/roller assembly and regulating sleeve are lubricated by main bearing oil

Supply Unit Fuel Pump, X62 & X72

- X4 fuel pump based on standard RT-flex pump but with latest improvements.
- Increased volume between Plunger and NRV for improved damping of forces on roller & spring (dynamic force reduced by ~20 %)

Supply Unit Fuel Pump, X62 & X72

- X4 fuel pump based on standard RT-flex pump but with latest improvements.
- Increased volume between Plunger and NRV for improved damping of forces on roller & spring (dynamic force reduced by ~20 %)

Supply Unit Fuel Pump

Fuel Pump

Supply Unit Fuel Pump

Maximum ac	chievable en	gine power	with one f	fuel pum	p failed

flex50 / X52 Engines								
Number of cylinders	5 Cylinder	6 Cylinder	7 Cylinder	8 Cylinder				
Number of fuel pumps / plunger Ø	2 / 35	3 / 32	3 / 34	3 / 36				
Max. engine power	56%	94%	90%	88%				
X62 Engines								
Number of cylinders	5 Cylinder	6 Cylinder	7 Cylinder	8 Cylinder				
Number of fuel pumps / plunger Ø	2 / 40	2/44	2 / 46	3 / 42				
Max. engine power	47%	48%	43%	81%				
X72 Engines								
Number of cylinders	5 Cylinder	6 Cylinder	7 Cylinder	8 Cylinder				
Number of fuel pumps / plunger Ø	2 / 46	3 / 42	3 / 46	3 / 46				
Max. engine power	45%	79%	71%	66%				

Supply Unit Fuel Pump Actuator – flex50DF / X52DF

Fuel Pump Actuator

Supply Unit Servo Oil Pump

- HAWE Axial Piston Pumps
- Servo oil pressure up to 300bar

Supply Unit Bosch S.O pump

Dynex S.O pump for flex50DF / X52DF

- Dynex Axial Piston Pumps
- Servo oil pressure up to 300bar

Dynex S.O pump for flex50DF / X52DF

Servo Oil Pump

- The Servo Oil supply unit is driven by the crankshaft, via an intermediate gearwheel
- The servo oil pumps are driven by individual pinions, having a "mechanical fuse" (reduced diameter on carried shaft between pinion gear and servo pump), in order to protect the gear-drive in case of a pump seizure

Servo Oil Service Pump

- Service pump to pressurise servo oil rail after service work
- Testing of exhaust valve functions at engine standstill
- Manual cylinder lubrication at engine standstill
- Must not be running while engine running

X62 & X72

flex50DF / X52DF

X62/72DF

Rail Unit

• Fuel oil rail:

 ~ 600 - 1000 bar fuel delivered by the fuel pumps of the supply unit.

For each cylinder, there is an Flow Limiting Valve. The rail is heated by a trace heating piping system.

• <u>Servo oil rail:</u>

~ 80 - 300 bar (50DF: 200 bar) servo oil, delivered by the servo oil pumps of the supply unit, depending on engine load. For each cylinder there is a Valve Control Unit (VCU).

• Mini-Rail:

60 bar servo oil regulated by pressure regulating valve and supplied from No.1 VCU (50DF: from SO Rail FE side, between #N & #N-1)

Cylinder oil rail Cylinder oil from Cylinder oil daily tank

- <u>Additional return/leakage piping:</u>
 - Injector lub oil supply
 - Fuel return & leakage pipe from injectors
 - Servo oil return
 - Main bearing oil pipe

Rail Unit

- Rail unit contains cylinder lubrication pumps
- Power supplies attached in separate housing within rail unit

Rail Unit

Rail Unit, flex50DF

Rail Unit, flex50DF

Rail Unit, flex50DF

#1 unit

Rail Unit, flex50DF – DE side

Rail Unit – Drive End Side

X62/72DF

Rail Unit – Free End Side

X62/72DF

36 © 2020 WinGD
Rail Unit

Fuel Oil Rail

Servo Oil Rail

Rail Unit

Servo Oil Inlet

EVCU, flex50DF

Exhaust valve actuation

- Full flexibility of EXV open & close timing
- Electro-hydraulically controlled
- Pre-controlled by rail valve
- VCU is directly sitting on servo oil rail

EVCU, flex50DF

EVCU, flex50DF

VCU

Exhaust valve actuation

- Full flexibility, electronically controlled
- Standard product acts as rail valve
- Servo oil rail screwed single pipe & welded design available
- VCU clamped to rail
- Same body for X62DF & X72DF

X52DF

VCU

VCU

- Weight: 30 kg
- Casted Housing
- External oil filling

VCU oil filter

VCU-Hydraulic Function

VCU-Hydraulic Function

Exhaust valve

- Outlet angle of valve cage 60° / 75°
- Fixation of valve cage to cylinder cover \bullet with 2 bolts
- Double piston in the valve drive ullet
- Valve spindle lubrication with system oil

Exhaust Valve Drive

Main differences to a conventional valve drive

- The exhaust valve is actuated by a double piston drive, in order to save oil volume
- The stroke sensor monitors exhaust valve open / close stroke
- The valve spindle has cone shape on top side for stroke sensor
- Air spring piston runs directly in the housing
- The disc spring package is dampening opening stroke in case of low air spring pressure

Exhaust Valve Drive

- The current position of the exhaust valve spindle is measured by a sensor in the upper housing
- The sensor is measuring the air gap between sensor and cone shaped top part of exhaust valve spindle
- The 4 20 mA signal is used as a feedback for the control system

Exhaust Valve Drive

X72 Exhaust Valve

Inner oil piston

Damper

Outer oil piston

Fuel Pressure Control Valve

- First stage overpressure (1050 bar)
- Second stage overpressure(1150 bar)
- Actuation via 24V solenoid from Safety system

X

10.5562_E0_5 RELIEV VALVE

61

© 2020 WinGD

Fuel Safety Valve

- Safety valve setting pressure(1250 bar)
- Alarm monitored by leakage sensor (LS3446A)
- Last chance for overpressure (protect pumps and fuel system)

Fuel PCV with Safety valve

Fuel PCV with Safety valve

Fuel Injection

Fuel injection

- Time controlled injectors from L'Orange
 - Three solenoid actuated injectors per cylinder for optimized injection control at all engine loads
- Mechanical fuel flow limiting valves
- Well proven non return valves in case of rising pipe breakage
- Single wall fuel rail (round bore)

Fuel Injection

Flow Limiting Valve, flex50DF

Fuel Injection Flow Limiting Valve

Fuel Injection

- Fuel injector with integrated injection control, leading to a compact design
- Flow Limiting Valve to ensure system safety by cutting-off injection on a specific cylinder in case of a heavy fuel leak

Fuel Injection

Fuel Injection Piping

- One high pressure pipe per nozzle
- Four low pressure pipes to each fuel injector holder sleeve
- Fuel injectors can be removed without disconnecting the low pressure pipes

Fuel Injection Fuel Injection Piping

Fuel Injection

Injector and Sleeve

62/72DF

Fuel Injection

Injector and Sleeve

Injector and Sleeve

New injection valve concept

- Solenoid actuated injector for optimised injection control at all engine load
- Validated component, based on medium speed engine technology (1600 bar, high frequency injection)
- Same inner parts for X35/40 and X52/62/72

Fuel Injection Valve, Closed

- 1. Solenoid and springs set
- 2. Control element
- 3. Pilot valve with outlet throttle

- 4. Control chamber
- 5. Nozzle
- 6. Control fuel return
- 7. Fuel leakage

Fuel Injection Valve, Opened

- 1. Solenoid and springs set
- 2. Control element
- 3. Pilot valve

- 4. Control chamber
- 5. Nozzle
- 6. Control fuel return

solenoid

ube oil

fuel leakage

control fuel return

pilot

valve outlet throttle

needle

Injector lubrication

- Oil from main oil supply is used to lubricate and cool the injectors
- To prevent oil spill when injector removed, oil supply blocked while engine at standstill or power failure
- In case of malfunction, a by-pass valve can be opened

Fuel Injection-Time Control

- Fuel nozzle is closed by the needle pressed down by fuel pressure
- Injection is triggered by a PWM signal, controlling a solenoid valve
- Fuel is released via the outlet throttle and needle lifted up
- Fuel is sprayed into the cylinder till the solenoid closes

Fuel Injection Valve, 1 Injector working

Fuel Injection Valve, All Injectors working

- Lower part (wear part) of the injector is calibrated in factory as a package
- Exchange on board by the crew
- No adjustment on board easy exchange and maintenance

Fuel Injection	Winterthur Gas & Diesel	Letter SL-0050	
	Proper mounting instructions	Date:	2023-01-27
	for main fuel injectors	Implementation	: Immediatel
FAST Injector	For WinGD X62, X62-B, X62DF, X62DF, X62DF-2.1, X72, X72-B, X72DF and X72DF-2.1 engines	Maintenance Information: Woodward L'Orange main fuel injector needle sticking	
WinGD has introduced a new fuel injector technology able to reduce by improving fuel injection performance	emissions and fuel	consur	nption
"FAST"			
Fuel Actuated Sac-less Technology			
Available for new engines and for retrofit on RT-	flex engines		
Image: Second system Non-FAST Image: Second system FAST			

FAST Injector

Electrical Trace Heating System

The electrical trace heating system heats the fuel injection pipes to the target temperature of 130°C \pm 10% and keeps this temperature stable.

Electrical Trace Heating System

When the engine operates with:

- Marine Diesel Oil (MDO): The heating cables must be set to off.
- Heavy Fuel Oil (HFO): It is recommended that the heating cables are set to on. This keeps the HFO at the correct temperature.

In the control box E88, you set the switch to the applicable position as follows:

- On
- Off
- Auto.

In Auto mode, the temperature measured on the fuel inlet pipe, sets the electrical system to on and off.

Electrical Trace Heating System

ICC (Cyl. Press. Sensor) previous execution

Intelligent Comb. Control (ICC)

- One permanent installed sensor per cylinder head for measuring of compression and firing pressure
- Closed loop control on time controlled injection system
- Same sensor can be used for Intelligent Combustion Monitoring (ICM) as well
- ICC sensor without gas-pocket in combustion chamber on DF engines

ICC (Cyl. Press. Sensor) today Standard

Intelligent Comb. Control (ICC)

- One permanent installed sensor per cylinder head for measuring of compression and firing pressure
- Closed loop control on time controlled injection system
- ICC sensor without gas-pocket in combustion chamber on DF engines
- Cylinder pressure sensor on bottom of relief valve

Speed- and Crank Angle Sensors, RT-flex50DF

- All pickup sensors are installed on crankshaft gearwheel
- Two reference signal sensors sense TDC- and BDC markers for crank angle calculation

Speed- and Crank Angle Sensors, RT-flex50DF

- Four sensors are installed on the intermediate wheel
- Two sensors sense TDC and BDC by markings on the flywheel

- By using four sensors, speed and sense of rotation can be detected
 - Faulty sensors can easily be changed
 - Tooth midpoint is used for calculations to avoid influences from mechanical installation and actual speed
 - Theoretical max. CA deviation:
 - max ± 0.5 deg at 7 rpm
 - max ± 0.1 deg at 15 rpm

For indicating the TDC and BDC position, two sensor read the two crank angle marks mounted on the flywheel

TDC & BDC Pick-up sensors

- LDU-20, <u>L</u>ocal <u>D</u>isplay <u>U</u>nit
 - 2 units per engine
 - external bus interfacing local user interface
- CCM-20, Cylinder Control Module
 - 2 unit per cylinder
 - cylinder functions
 - distributed engine functions
- MCM-11, Main Control Module
 - 1 unit per engine
 - external bus interfacing
 - engine speed control
- IOM-10, Input Output Module
 - 1 unit per engine
 - Data acquisition unit

Cylinder Control Modules

X72 DF

Local Manoeuvring Stand

- The E25 box contains one Main Control Module (MCM-11) and a Local Display Unit (LDU-20)
- The MCM-11 is taking care of the engine speed control, digital interface to CCM-20's and control room equipment
- The E10 is the control terminal box
- E110 is the alarm terminal box

Local Display Unit LDU-20

- The Local Display Unit (LDU-20 panel) is the interface to UNIC-flex
- It is integrated into the E25 local manoeuvring stand from where the engine can be operated in case of emergency
- One more LDU-20 is installed in the engine control room

Control Air Supply Unit, flex50DF

Control Air Supply Unit

Main Starting Valve

102 © 2020 WinGD

Pilot Starting Valve

The pilot starting valve is opened by an electric signal

Pilot Starting Valve

Shaft Locking Device for twin propeller

Locked shaft, windmilling and opposed operation of twinengine installations

WinGD twin-engine installations

